Dispersions of multi-wall carbon nanotubes in ferroelectric liquid crystals.

نویسندگان

  • M Yakemseva
  • I Dierking
  • N Kapernaum
  • N Usoltseva
  • F Giesselmann
چکیده

The electro-optic and dielectric properties of ferroelectric liquid crystal-multi-wall carbon nanotube dispersions were investigated with respect to temperature and nanotube concentration. The main physical properties, such as tilt angle, spontaneous polarization, response time, viscosity, and Goldstone-mode relaxation strength and frequency were studied. While all dispersions exhibit the expected temperature dependencies of their physical properties, their dependence on nanotube concentration is still a controversial discussion in literature, with several contradicting reports. For increasing nanotube concentration we observed a decrease in tilt angle, but an increase in spontaneous polarisation, the latter explaining the enhancement of the bilinear coupling coefficient, and the dielectric relaxation strength. Despite the increase in polarization, the electro-optic response times slow down, which suggests an increase of rotational viscosity along the tilt cone. It is anticipated that the latter also accounts for the observed decrease of the Goldstone-mode relaxation frequency for increasing nanotube concentration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tailor-designed polyphilic promotors for stabilizing dispersions of carbon nanotubes in liquid crystals.

We present a potent multifunctional molecular design concept for promoting the dispersion of carbon nanotubes (CNTs) in thermotropic liquid crystals (LCs), making CNT-in-LC dispersions of unprecedented stability possible and broadening the scope of potential applications.

متن کامل

Liquid crystal–carbon nanotube dispersions

Parallel alignment of nanotubes can be obtained by dispersion in a self-organizing anisotropic fluid such as a nematic liquid crystal. Exploiting the cooperative reorientation of liquid crystals, the overall direction of the nanotube alignment can be controlled both statically and dynamically by the application of external fields. These can be electric, magnetic, mechanic, or even optic in natu...

متن کامل

Effect of carbon nanotubes on response time of ferroelectric liquid crystals.

We present the results of the fast electro-optic response of multiwalled carbon nanotubes (MWCNTs)-doped deformed helix ferroelectric liquid crystal (DHFLC). The fastening of the response in MWCNTs-doped DHFLC has been attributed to the decrease in rotational viscosity and increase in anchoring energy. The decrease in the former is due to the experience of the torque both by MWCNTs and DHFLC an...

متن کامل

Characterization of carbon nanotube--thermotropic nematic liquid crystal composites

Dispersions of carbon nanotubes (CNTs) in liquid crystals (LCs) have attracted attention due to their unique properties and possible applications in photonics and electronics. However, these are hard to stabilize, and the loading level in the equilibrium state in LC hosts is small. A practical way to monitor the quality and CNT incorporation in such equilibrium dispersions is required. Here, we...

متن کامل

High Resolution Image with Multi-wall Carbon Nanotube Atomic Force Microscopy Tip (RESEARCH NOTE)

In this paper, a simple and reproducible approach for attaching the multi-wall carbon nanotubes (MWNTs) to the apex of the atomic force microscope probe has been proposed. For this purpose, the dielectrophoresis method was applied due to its simple performance, cheapness and reliability. In this method, various parameters such as voltage, frequency, concentration of carbon nanotubes solution an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The European physical journal. E, Soft matter

دوره 37 2  شماره 

صفحات  -

تاریخ انتشار 2014